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Abstract. In this paper, we present a simple, yet useful, concentration result concerning random
(weighted) projections in high dimensional spaces. As application, we prove a general concen-
tration result for random quadratic forms, extended a classical result of Hanson and Wright and
improved several recent results. In another application, we show that the infinity norm of most
(unit) eigenvectors of a random ±1 matrix is O(

√
logn/n), which is optimal, sharpening various

earlier estimates. In fact, the estimate holds for a large class of random matrices.
As a by-product, we also obtain an estimate on the threshold for the local semi-circle law. This

estimate is tight up to a
√

logn factor. It is an interesting open question to see if this factor is
necessary.

1. Introduction

1.1. Projection of a random vector. Consider Cn with a subspace H of dimension d. Let
X = (ξ1, . . . , ξn) be a random vector. The length of the orthogonal projection of X onto H is an
important parameter which plays an essential role in the studies of random matrices and related
areas.

In [19], Tao and the first author showed that (under certain conditions) this length is strongly
concentrated. In other words, the projection of X onto H lies essentially on a circle centered at the
origin. This fact played a crucial role in the computation of the determinant of a random matrix
with iid entries. As the absolute value of the determinant is the volume of the parallelepiped
spanned by the row vectors, one can expose these vectors in some order and compute the volume
as the product of the distances from each vector to the subspace spanned by the previous ones.
On the other hand, the distance can be computed from the length of X (which is usually easy
to estimate) and the length of the projection. (We only talk about orthogonal projections in this
paper and will omit the word ”orthogonal” from this point.)

Lemma 1 (Projection Lemma). [19] Let X = (ξ1, . . . , ξn) by a random vector in Cn whose co-
ordinates ξi are independent random variables with mean 0 and variance 1. Assume furthermore
that there is a number K (which may depend on n) such that |ξi| ≤ K with probability 1 and
K ≥ E|ξi|4 + 1 for all i. Let H be a subspace of dimension d and ΠHX be the length of the
projection of X onto H

P(|ΠHX − d| ≥ t) ≤ 10 exp(− t2

20K2
).

The constants 10 and 20 are rather arbitrary. We make no attempt to optimize the constants in
this paper.
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1.2. Weighted projections. Let us fix an orthonormal basis (u1, . . . , ud) of H. We can express
ΠHX as

(1) ΠHX = (

d∑
i=1

|u∗iX|2)1/2.

In recent studies, we came up with situations when the role of the axis ui are not uniform. Formally

speaking, we need to consider a weighted version of (1) where (
∑d

i=1 |ui · X|2)1/2 is replaced by

(
∑d

i=1 ci|u∗iX|2)1/2 with ci being non-negative numbers (weights). This motivates us to prove the
following generalization of the Projection Lemma.

Lemma 2 (Weighted projection lemma). There are constants C,C ′ > 0 such that there following
holds. Let X = (ξ1, . . . , ξn) by a random vector in Cn whose coordinates ξi are independent random
variables with mean 0 and variance 1. Assume furthermore that there is a number K (which may
depend on n) such that |ξi| ≤ K with probability 1 for all i. Let H be a subspace of dimension d
with an orthonormal basis {u1, . . . , ud}. Then for any 1 ≥ c1, . . . , cd ≥ 0

P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ C exp(− t2

C ′K2
).

If |ξ| ≤ K with probability one, we say that ξ is K-bounded. As a matter of fact, we can keep
C = 10, C ′ = 1/20 as before, but we prefer this setting for the sake of consistancy.

By squaring, it follows that

(2) P(

d∑
j=1

cj(|u∗jX|2 − 1) ≤ 2t

√√√√ d∑
j=1

cj + t2) ≤ C exp(−C ′ t
2

K2
)

and for t ≤
√∑

i ci

(3) P(

d∑
j=1

cj(|u∗jX|2 − 1) ≤ −2t

√√√√ d∑
j=1

cj + t2) ≤ C exp(−C ′ t
2

K2
)

Furthermore,

(4) |
d∑
j=1

cj(|u∗jX|2 − 1)| ≤ 2t

√√√√ d∑
j=1

cj + t2

with probability at least 1− C exp(−C ′ t2
K2 ).

Remark 3. The values of C and C ′ may be different in different inequalities.
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1.3. Applications. We are going to present two applications. The first is a general concentration
result for a quadratic form Q :=

∑
1≤i,j≤n aijξiξj where ξi are random variables. This can be seen

as a quadratic version of the well-known Chernoff bound. Already in 1971, Hanson and Wright [12]
proved a strong concentration result for the sub-gaussian random variables. Recently, their result
has been extended to other variables (with some loss in the bounds). Our result will generalize or
strengthen many of the former results. Details will appear in Section 2.

The second application concerns the (infinity) norm of eigenvectors of a random matrix. Estimates
for this norm is important for studies in graph theory [5] and random matrices [9] (see also [6, 24]
for surveys). We are going to show that the norm of most eigenvectors of a symmetric random

±1 matrix is O(
√

log n/n). This bound seems optimal optimal (notice that the infinity norm of a

random vector chosen uniformly from the unit sphere is Ω(
√

log n/n)) and improves several earlier
estimates. Our estimate also holds for many other models of random matrices.

As a by-product of the proof, we obtain an almost tight estimate for the validity threshold of the
local semi-circle law for random matrices (see Section 4 for details).

1.4. Weighted projection lemma for unbounded random variables. In Lemma 2 we assume
the ξi are K-bounded. In this section, we present two methods to weaken this assumption.

The first is to consider a notion which is weaker than that of K-bounded.

We say a random vector X = (ξ1, . . . , ξn) is K-concentrated (where K may depend on n) if there
are constants C,C ′ > 0 such that for any convex, 1-Lipschitz function F : Cn → R and any t > 0

(5) P(|F (X)−M(F (X))| ≥ t) ≤ C exp(−C ′ t
2

K2
),

where M(Y ) denotes the median of a random variable Y (choose an arbitrary one of there are
many).

Notice that the notion of K-concentrated is somewhat similar to the notion of threshold in random
graph theory in the sense that if X is K-concentrated then it is cK-concentrated for any constant
c > 0 (similarly, if p(n) is a threshold for a property P (say, containing a triangle) then cp(n) is
also a threshold). One can also replace the median by the expectation (see Lemma 18).

Examples of K-concentrated random variables

• If the coordinates of X are iid standard gaussian (real of complex), then X is 1-concentrated
(see [14]).
• If ξi are independent and ξi are K-bounded for all i, then X is K-concentrated (this is a

corollary of Talagrand’s inequality; see [14, Chapter 4]; [20, Theorem F.5]).
• If X satisfies the log-Sobolev inequality with parameter K2, then it is K-concentrated (see

[14, Theorem 5.3]).

Lemma 4. Let X = (ξ1, . . . , ξn) be a K-concentrated random vector in Cn whose coordinates ξi
have mean 0 and variance 1. Then there are constants C,C ′ > 0 (which depend on, but could be
different from the constants in (5)) such that the following holds. Let H be a subspace of dimension
d with an orthonormal basis {u1, . . . , ud}. Then for any 1 ≥ c1, . . . , cd ≥ 0
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P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ C exp(−C ′ t
2

K2
).

Another way to weaken the K-bounded assumption is to consider truncation. If ξ is not bounded,
but has light tail, then by setting K appropriately, we can show that P(|ξ| ≥ K) is negligible with
respect to the probability bound we want to prove. Technically speaking, we would like to replace
ξ by its truncation ξ′ := ξI|ξ|≤K . A technical problem here is that the mean and variance of ξ′ will
not match those of ξ, but this can be handled by an extra normalization step.

Assume that the ξi are independent with mean zero and variance one. Choose a number K > 1
and let ε1 := max1≤i≤n P(|ξi| > K). Set ξ′i := ξiI|ξi|≤K and let µi and σ2

i denote its mean and

variance. Set ε2 := max1≤i≤n |µi| and ε3 := max1≤i≤n |σ2
i − 1|. Assume all εj ≤ 1/2 (in practice

this assumption is satisfied easily). Define ξ̃i :=
ξ′i−µi
σi

. The ξ̃i are independent with mean zero and

variance 1 and is 2K-bounded. Let X ′ := (ξ′1, . . . , ξ
′
n) and X̃ := (ξ̃1, . . . , ξ̃n). It is obvious that

P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ P

|
√√√√ d∑

j=1

cj |u∗jX ′|2 −

√√√√ d∑
j=1

cj | ≥ t

+ nε1.

The next observation is that if ε2, ε3 are small, then
∑

1≤i≤d ci|u∗iX ′|2 and
∑

1≤i≤d ci|u∗i X̃|2 are
more or less the same. By definition, we have with probability one

|ξ′i − ξ̃i| = |
ξi(σi − 1) + µi

σi
| ≤ 2(Kε3 + ε2).

It follows that D := X ′− X̃ has norm at most 2n1/2(Kε3 + ε2) with probability one. On the other
hand,

∣∣∣ ∑
1≤i≤d

ci|u∗iX ′|2 −
∑

1≤i≤d
ci|u∗i X̃|2

∣∣∣ ≤ 2
∑

1≤i≤d
ci|u∗iX ′i||u∗iD|+ ci|u∗iD|2.

As ui are unit vectors, |u∗iX ′i| ≤ ‖X ′i‖ ≤
√
nK and |u∗iDi| ≤ ‖Di‖ ≤ 2

√
n(Kε2 + ε3) (these bounds

are generous and can be improved by a polynomial factor in certain cases, but in applications such
improvement rarely matter). It follows, again rather generously

|
∑

1≤i≤n
ci|u∗iX ′|2 −

∑
1≤i≤n

ci|u∗i X̃|2| ≤ 4n
d∑
i=1

ciK
2(ε2 + ε3) ≤ 4n2K2(ε2 + ε3).

Applying Lemma 2 for X̃, we obtain

Lemma 5. There are constants C,C > 0 such that the following holds. Let X = (ξ1, . . . , ξn) by
a random vector in Cn whose coordinates ξi are independent random variables with mean 0 and
variance 1. Under the above notation, we have, for any 1 ≥ c1, . . . , cn ≥ 0 and t > 0
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(6) P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t+ 4n2K2(ε2 + ε3)

 ≤ C exp(−C ′ t
2

K2
) + nε1.

In practice, εj are typically super-polynomially small, which yields 4n2K2(ε2 + ε3) = o(1). This
term can be ignored (by slightly changing the values of C,C ′ if necessary) and we end up with a
more friendly inequality

(7) P(|

√√√√ d∑
j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t) ≤ C exp(−C ′ t
2

K2
) + nε1.

As an illustration, let us consider the following tail-decay assumption, which comes up frequently
in practice.

Definition 6. We say that ξ is sub-exponential with exponent α if there are constants a, b > 0
such that for all t > 0

(8) P(|ξ −Eξ| ≥ tα) ≤ a exp(−bt).

If α = 1/2 then ξ is sub-gaussian.

For a sufficiently large K (compared to a and b), εj ≤ exp(− b
2K

1/α) for j = 1, 2, 3. For K =

ω(logα n), n2K2 exp(− b
2K

1/α) = o(1) and (7) yields

(9) P

|
√√√√ d∑

j=1

cj |u∗jX|2 −

√√√√ d∑
j=1

cj | ≥ t

 ≤ C exp(−C ′ t
2

K2
) + n exp(− b

2
K1/α).

1.5. Structure of the paper. Notation. We use standard assumption notation such as O, o,Θ,
etc under the assumption that n →∞. For a vector X, ‖X‖ is its Euclidean norm and ‖X‖∞ its
infinity norm. For a matrix A ∈ Cn×n, ‖A‖F and ‖A‖2 denote the Frobenius and spectral norm,
respectively. All eigenvectors will have unit length.

2. Concentration inequalities for quadratic forms

Consider a quadratic form Y := X∗AX where X = (ξ1, . . . , ξn) is, as usual, a random vector and
A = (aij)1≤i,j≤n a deterministic matrix. In this section, we aim to prove a large deviation result
for Y , which can be seen as the quadratic version of the standard Chernoff bound. Quadratic
forms of random variables appear frequently in applications and the large deviation problem been
considered by several researchers.
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In 1971, Hanson and Wright [12] obtained the first important inequality for sub-gaussian random
variables.

Theorem 7 (Hanson-Wright inequality). Let X = (ξ1, . . . , ξn) ∈ Rn be random vector with ξi
being iid symmetric and sub-gaussian random variables with mean 0 and variance 1. There exist
constants C,C ′ > 0 (which may depend on the constants in Definition 8) such that the following
hold. Let A be a real matrix of size n with entries aij and B := (|aij |). Then

(10) P(|XTAX − trace(A)| ≥ t) ≤ C exp(−C ′min{ t2

‖A‖2F
,

t

‖B‖2
})

for any t > 0.

Later, Wright [26] extended Theorem 7 to non-symmetric random variables. Recently, Hsu,
Kakade and Zhang [13] showed that one can obtain a better upper tail (notice that ‖B‖2 is replaced
by ‖A‖2)

(11) P(XTAX − trace(A) ≥ t) ≤ C exp(−C ′min{ t2

‖A‖2F
,

t

‖A‖2
})

under a weaker assumption. On the other hand, their method does not cover the lower tail. Let
us pause here to point out a strong distinction from the linear case and the quadratic case: In the
linear case (Chernoff type bounds), the lower tail follows from the upper tail by simply switching
ξi to −ξi, but this trick is useless in the quadratic case.

In the previous papers, the random variables ξi are required to be real. Few years ago, motivated
by the delocalization problem for random matrices, Erdös, Schlein and Yau [9] considered the
complex case. By assuming either both the real and imaginary parts of xi are iid sub-gaussian or
the distribution of xi is rotationally symmetric, they proved

(12) P(|X∗AX − trace(A)| ≥ t) ≤ C exp(−C ′ t

‖A‖F
).

Later, Erdös, Yau and Yin [11] showed that if ξi are independent sub-exponential random variables
with exponent α > 0, having mean 0 and variance 1, then

(13) P(|X∗AX − trace(A)| ≥ t) ≤ C exp(−C ′( t

‖A‖F
)

1
2+2α ).

Using Lemma 4, we will prove the following result

Theorem 8. Let X be a K-concentrated random vector in Cn whose entries have mean 0 and
variance 1. Then there are constants C,C ′ > 0 such that for any matrix A

(14) P(|X∗AX − trace(A)| ≥ t) ≤ C log n exp(−C ′K−2 min{ t2

‖A‖2F log n
,

t

‖A‖2
}).
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To simplify the comparison with other results, let us ignore the log n terms (which play little role
in practice). If K = O(1), then the main difference between Theorem 7 of Hanson and Wright and
Theorem 8 is that the term ‖B‖2 in Theorem 7 is now replaced by ‖A‖2. It is easy to see that
‖B‖2 ≥ ‖A‖2 for any real matrix A. In fact, in many cases, ‖B‖2 is significantly larger than ‖A‖2.
For instance, a random matrix A with entries of order 1 typically has spectral norm of order

√
n,

but in this case it is clear that ‖B‖ has spectral norm of order n (as all row sums are of this order).
The same holds for several classical explicit matrices, such as the Hadamard matrix. In these cases,
our bound improves Hanson-Wright’s significantly. Furthermore, our result applies in the complex
case while it seems that the approach used by Hanson and Wright is restricted to the real case.

Comparing to (12), we do not need the fairly restricted assumption that either both the real and
imaginary parts of xi are iid sub-gaussian or the distribution of xi is rotationally symmetric. In

the case K = O(1), both terms t2

‖A‖2F logn
and t

‖A‖2 in our bound can be considerably larger than
t

‖A‖F . For instance, t
‖A‖2 and t

‖A‖F differ by a factor
√
n in both the random and Hadamard cases.

Next, we make use of Lemma 5. We keep the parameters ε1, ε2, ε3 as defined in this lemma.

Theorem 9. There are constants C,C ′ > 0 such that the following holds. Assume n2K2(ε2+ε3)) =
o(1), then

P(|X∗AX − trace(A)| ≥ t) ≤ C log n exp(−C ′K−2 min{ t2

‖A‖2F log n
,

t

‖A‖2
}) + nε1.

As an illustration, let us consider the case when ξi are sub-exponential with exponent α > 0 (with
accompanying constants a and b). We obtain an analogue of (??)

(15) P(|x∗Ax− trace(A)| ≥ t) ≤ C exp(−C ′K−2 min{ t2

‖A‖2F log n
,

t

‖A‖2
}) + n exp(− b

2
K1/α),

under the assumption that K = ω(logα n).

To optimize the bound, we choose K such that K−2 min{ t2

‖A‖2F logn
, t
‖A‖2 }) = K1/α. This leads to

setting K := min{( t
‖A‖F

√
logn

)
2

2+1/α , ( t
‖A‖2 )

1
2+1/α }. Assume

t = ω(logα+1 n(‖A‖F + logαn ‖A‖2).

This assumption guarantees K = ω(logα n). It also implies n exp(− b
2K

1/α) ≤ exp(− b
3K

1/α. It
follows that

Corollary 10. Assume that ξi are independent sub-exponential with exponent α > 0 with mean
0 and variance 1. Then there are constants C,C ′ > 0 such that for any t = ω(logα+1 n(‖A‖F +
logαn ‖A‖2)

(16) P(|x∗Ax− trace(A)|| ≥ t) ≤ C exp(−C ′min{( t

‖AF ‖
√

log n
)

1
α+1/2 , (

t

‖A‖2
)

1
2α+1 }.
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Notice that in order to make a Hanson-Wright type bound non-trivial, we need to assume t ≥
(‖A‖F + ‖A‖2). In many applications, we want the probability bound to be polynomially or even

super-polynomially small. This requires a lower bound logΩ(1) n(‖A‖F + ‖A‖2) on t, which is
consistent with the assumption in the corollary.

(16) compares favorably to (13). For the term t
‖A‖F , the exponent 1

α+1/2 is superior to 1
2α+2 (notice

that we are talking about a double exponent, so an improvement here could improve the quality of
the bound quite a lot).

For the term t
‖A‖2 , the exponent 1

2α+1 is still better than 1
2α+2 . Furthermore, ‖A‖2 can be signifi-

cantly smaller than ‖A‖F , as discussed above.

3. Norm of random eigenvectors

Let Mn be a symmetric ±1 matrix (the upper diagonal entries are iid Bernoulli random variables
taking values ±1 with probability 1/2). This is an important object in both probabilistic combina-
torics and the theory of random matrices. Let u be an arbitrary eigenvector of Mn (of unit lenght).
We would like to study the natural question, raised by Dekel et. al. [5]

How big is ‖u‖∞ ?

A good bound on the infinity norm of the eigenvectors plays a critical in spectral analysis and
many other applications, such as the studies of nodal domains (see for instance [5] and the references
therein). Recently, it also plays a crucial role in the study of local statistics of random matrices
(see [24, 6] for surverys).

It is well known ([16]) that if we replace the entries of Mn by iid standard gaussian variables, then
a random eigenvector distributes like a random vector v (with respect to the uniform distribution)

from the unit sphere. Such a vector, with high probability, has norm Θ(
√

log n/n). It is natural to
conjecture that the same bound holds in the Bernoulli case. As a matter of fact, several bounds of
the type n−1/2+ε or n−1/2 logC n have been proved recently for various models of random matrices.
They are usually referred to as delocalization results. The first such result was obtained by Erdös
et. al. [9, Corollary 3.2] for a random matrix with entries having continuous distribution satisfying
certain decay assumption, using (12). The next result, by Tao and the first author, handles the
case when the entries are K-bounded (including the Bernoulli case), using the approach in [9] with
Lemma 1 (see [22, Proposition 62]. Later, these results were extended to many other models (see
[6, 24] for surveys). However, in all results, the constant C in the log term (if any) is either far
from the conjectural value 1/2 or was not even determined (in these cases, if one tries to follow all
steps to track down this value, the result would turn out to be rather disappointing).

As an application of the Weighted projection lemma, we are going to show that most of the
eigenvectors of Mn have norm O(

√
log n/n), with high probability. To explain what we mean by

“most of”, we first mention some basic facts about the eigenvalues. A corner stone of random matrix
theory is the Wigner semi-circle law, which describes the limiting distribution of the eigenvalues.
Denote by ρsc the semi-circle density function with support on [−2, 2],

(17) ρsc(x) :=

{
1

2π

√
4− x2, |x| ≤ 2

0, |x| > 2.
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Theorem 11 (Semi-circular law). Let Mn be a random Hermitian matrix whose entries on and
above the diagonal are iid bounded random variables with zero mean and unit variance and Wn =

1√
n
Mn. Then for any real number x,

lim
n→∞

1

n
|{1 ≤ i ≤ n : λi(Wn) ≤ x}| =

∫ x

−2
ρsc(y) dy

in the sense of probability, where we use |I| to denote the cardinality of a finite set I.

Remark 12. This is result is the famous Wigner’s semi-circle law. It was first proved by Wigner
for some class of random matrices and later extended to the general case above by many researchers;
we refer to [17, 3] for detailed discussions. By Wigner’s law, we expect most of the eigenvalues of
Wn to lie in the interval (−2 + ε, 2 + ε) for a fixed, small ε. Following random matrix literature,
we refer to this region as the bulk of the spectrum.

Now we are ready to state our result

Theorem 13 (Optimal infinity norm of eigenvectors). For any constant C1 > 0 there is a constant
C2 > 0 such that the following holds.

• (Bulk case) For any ε > 0 and any 1 ≤ i ≤ n with λi(Wn) ∈ [−2 + ε, 2 − ε], let ui(Wn)
denote the corresponding unit eigenvector, then

‖ui(Wn)‖∞ ≤
C2 log1/2 n√

n

with probability at least 1− n−C1.
• (Edge case) For any ε > 0 and any 1 ≤ i ≤ n with λi(Wn) ∈ [−2− ε,−2 + ε]∪ [2− ε, 2 + ε],

let ui(Wn) denote the corresponding unit eigenvector, then

‖ui(Wn)‖∞ ≤
C2 log n√

n

with probability at least 1− n−C1.

By Wigner’s semi-circle law, with probability 1 − O(ε3/2) a randomly selected eigenvector corre-
sponds to an eigenvalue in the interval [−2 + ε, 2− ε]. By letting ε tends to zero, we can conclude

that with high probability, a randomly selected eigenvector u satisfies ‖u‖∞ = O(
√

logn
n ). It is an

interesting open problem to reduce the log n term in the edge case to
√

log n. If this holds, then all

eigenvectors u satisfies the optimal bound ‖u‖∞ = O(
√

logn
n ).

For numerical simulation in Figure 1, we plot the cumulative distribution function of the (normal-
ized) infinity norm of eigenvector v for symmetric random Bernoulli matrix, and compare it with
the vector u chosen uniformly from the unit sphere.

This simulation suggests a tantalizing conjecture that ‖u‖∞ and ‖v‖∞, after a proper normaliza-
tion, have the same distribution. However, this conjecture is beyond our reach at this moment.

We stated our result for random Bernoulli matrix since this is the most popular model in combi-
natorics. One can easily extend the result to the following more general setting. Let Zi be the ith
row vector of the matrix and Xi be the n− 1 dimensional vector obtained from Zi by deleting the
ith (diagonal) entry.



10 VAN VU AND KE WANG

2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

√
n · ‖v‖∞

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

 

 

 Bernoulli
 Unit Sphere

Figure 1. Plotted above are the empirical cumulative distribution functions of the
distribution of

√
n · ‖v‖∞ for n = 2000, evaluated from 500 samples. In the blue

curve, u is a unit eigenvector for symmetric random Bernoulli matrix. The red curve
is generated for v to have a uniform distribution on the unit sphere Sn.

Theorem 14 (Optimal infinity norm of eigenvectors). . Let Mn be a Hermitian matrix whose
upper diagonal entries are independent random variables with mean 0 and variance 1. Assume
furthermore that for any index 1 ≤ i ≤ n, Xi is K-concentrated. Then for any constant C1 > 0
there is a constant C2 > 0 such that the following holds

• (Bulk case) For any ε > 0 and any 1 ≤ i ≤ n with λi(Wn) ∈ [−2 + ε, 2 − ε], let ui(Wn)
denote the corresponding unit eigenvector, then

‖ui(Wn)‖∞ ≤
C2K log1/2 n√

n

with probability at least 1− n−C1.
• (Edge case) For any ε > 0 and any 1 ≤ i ≤ n with λi(Wn) ∈ [−2− ε,−2 + ε]∪ [2− ε, 2 + ε],

let ui(Wn) denote the corresponding unit eigenvector, then

‖ui(Wn)‖∞ ≤
C2K

2 log n√
n

with probability at least 1− n−C1.

Since any K-concentrate implies K-bounded, Theorem 14 implies Theorem 13.

4. The local semi-circle law

The key tool for bounding the infinity norm of a eigenvector is a statement of the following type:
Any short interval in the spectrum contains an eigenvalue, with high probability. The quality of the
bound will depend on how short the interval is. This approached was developed by Erdös, Schlein
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and Yau in [8, 7, 9], leading to the bounds n−2/3, n−3/4 and finally n−1+o(1). An argument of the
same spirit was developed by Tao and the first author in [20] (see [20, Chapter 4] for a problem
concerning random non-hermitian matrices.

The leading idea is that one expects the semi-circle law to hold for small intervals (or at small
scale). Intuitively, we would like to have with high probability that

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|,

for any interval I and fixed δ > 0, where NI denotes the number of eigenvalues of Wn := 1√
n
Mn on

the interval I. Of course, the reader can easily see that I cannot be arbitrarily short (since NI is
an integer). Following [9], we call a statement of this kind a local semi-circle law (LSCL).

A natural question is: how short can I be ? Formally, we say that the LSCL holds at a scale f(n)
if with probability 1− o(1)

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|,

for any interval I in the bulk of length ω(f(n)) and any fixed δ > 0. Furthermore, we say that f(n)
is a threshold scale if the LSCL holds at scale f(n) but does not holds at scale g(n) for any function
g(n) = o(f(n)). (The reader may notice a similarity between this definition and the definition of
threshold functions for random graphs.) We would like to raise the following problem.

Problem 15. Determine the threshold scale (if exists).

A recent result by Ben Arous and Bourgart [1] shows that the maximum gap between two con-
secutive (bulk) eigenvalues of GUE (random matrix with complex gaussian entries) is of order
Θ(
√

log n/n), with high probability. Thus, if we partition the bulk into intervals of length α
√

log n/n
for a sufficiently small α, one of these intervals contains at most one eigenvalue. Thus, we expect
that the LSCL do not hold below the

√
log n/n scale, at least for a large class of random matrices.

In [9, 22], upper bound of the form logC n/n was proved for some large value of C. Here we are
going to show

Theorem 16. Let Mn be a random matrix with K-concentrated entries. Then the threshold scale
for LSCL bounded from above by K2 log n/n.

Theorem 16, on the other hand, is a consequence of the following more quantitative statement.

Theorem 17. For any constants ε, δ, C1 > 0 there is a constant C2 > 0 such that the following
holds. Let Mn be a Hermitian random matrix whose upper diagonal entries are independent K-
concentrated random variables with mean 0 and variance 1. Then with probability at least 1−n−C1,
we have

|NI − n
∫
I
ρsc(x) dx| ≤ δn

∫
I
ρsc(x) dx,

for all interval I ⊂ (−2 + ε, 2− ε) of length at least C2K
2 log n/n.

By Theorem 17, we now know (at least for random matrices with bounded entries) that the right
scale is log n/n. We can now formulate a sharp threshold question. Let us fix δ and δ′. Then for
each n, let Cn be the infimum of those C such that with probability 1− δ′

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|
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holds for any I, |I| ≥ C log n/n. Is it true that lim
n→∞

Cn exist? If so, can we compute its value as a

function of δ and δ′?

5. Proof of Lemma 4

Set f(X) :=
√∑d

j=1 cj |u∗jX|2. Thus, f is a function from Cn to R.

We first observe that f(X) is convex. Indeed, for 0 ≤ λ, µ ≤ 1 where λ+µ = 1 and any X,Y ∈ Cn,
by Cauchy-Schwardz inequality,

f(λX + µY ) ≤

√√√√ d∑
j=1

cj(λ|u∗jX|+ µ|u∗jY |)2

≤ λ

√√√√ d∑
j=1

cj |u∗jX|2 + µ

√√√√ d∑
j=1

cj |u∗jY |2 = λf(X) + µf(Y )

Next, we show that f(X) is 1-Lipschitz. Noticed that f(X) ≤
√∑d

j=1 |u∗jX|2 ≤ ‖X‖. Since f(X)

is convex, one has

1

2
f(X) = f(

1

2
X) = f(

1

2
(X − Y ) +

1

2
Y ) ≤ 1

2
f(X − Y ) +

1

2
f(Y ).

Thus f(X)− f(Y ) ≤ f(X − Y ) and f(Y )− f(X) ≤ f(Y −X) = f(X − Y ), which implies

|f(X)− f(Y )| ≤ f(X − Y ) ≤ ‖X − Y ‖.

Thus, by the definition of the K-concentrated property,

(18) P(|f(X)−M(f(X))| ≥ t) ≤ C exp(−C ′ t
2

K2
),

for some constants C,C ′ > 0.

To conclude the proof, it suffices to show |M(f(X))−
√∑d

j=1 cj | = O(K).

Lemma 18. Let Y be a real random variable. Assume P(|Y − µ| ≥ t) ≤ f(t), where
∫∞

0 f(x)dx =
O(1). Then |EY − µ| = O(1).

Assume further more that Y is non-negative, EY 2 = σ2, µ + σ = Ω(1) and
∫∞

0 xf(x) = O(1),
then |EY − σ| = O(1).

Proof. By symmetry, it suffices to show that E(Y ) ≤ µ+O(1). Notice that for any variable Y and
any number L

EY ≤ L+

∫ ∞
0

P(Y ≥ L+ x)dx.
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Taking L = µ, the desired bound follows from the assumption on f(x).

To prove the second part, notice that

EY 2 ≤ L2 +

∫ ∞
0

xP(Y ≥ L+ x)dx.

Taking L = µ, and use the second assumption on f(x), we have

σ2 ≤ µ2 +O(1).

As σ + µ = Ω(1) we can conclude that σ ≤ µ + O(1) = EY + O(1). Furthermore, by convexity
σ ≥ EY , concluding the proof. �

To apply this lemma, set c′i := ci
max1≤i≤n ci

, Y := 1
K

√∑n
i=1 c

′
i|u∗iX|2 and µ := M(Y ). We have, by

the K-concentration property

P(|Y − µ| ≥ t) = P(|

√√√√ n∑
i=1

c′i|u∗iX|2 −M(

√√√√ n∑
i=1

c′i|u∗iX|2)| ≥ tK) ≤ C exp(−C ′t2).

Set f(x) = C exp(−C ′x2). The assumptions on f(x) in Lemma 18 are trivially satisfied. Since
EY 2 = σ2 =

∑n
i=1 c

′
i ≥ 1, it follows from Lemma 18 that

M(Y ) =

√√√√ n∑
i=1

c′i +O(1).

Renormalizing, we obtain

M(

√√√√√ n∑
i=1

ci|u∗iX|2) =

√√√√ n∑
i=1

ci +O(K
√

max
1≤i≤n

ci),

which concludes the proof of Lemma 4.

6. Proof of Theorem 8

Notice that if Y = X∗AX, then Y + Ȳ = X∗(A+A∗)X and Y − Ȳ = X∗(A−A∗)X. Since

Y − traceA =
1

2

(
[(Y + Ȳ )− (trace(A+A∗)] +

√
−1[(Y − Ȳ )− trace(A−A∗)],

we have
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P(|Y − traceA| ≥ t) ≤ P(|(Y + Ȳ )− (trace(A+A∗)| ≥ t) + P(|(Y − Ȳ )− trace(A−A∗)| ≥ t).

Moreover, as ‖A+A∗‖F , ‖A−A∗‖F = O(‖A‖F ) and ‖A+A∗‖2, ‖A−A∗‖2 = O(‖A‖2), it suffices
to prove the theorem in the case A is Hermitian.

Next, we observe that any Hermitian matrix A can be written as A := A1 − A2 where Ai are
positive semi-definite and maxi ‖Ai‖ ≤ ‖A‖,maxi ‖Ai‖F ≤ ‖A‖F . (In fact, the positive eigenvalues
of A1 are the positive eigenvalues of A and the positive eigenvalues of A2 are the absolute values
of the negative eigenvalues of A.) This enables us to further reduce the problem to the case when
A is positive semi-definite.

Finally, as the content of the theorem is invariant under scaling, we can assume that ‖A‖ = 1.
Let c1 = 1, 1 ≥ c2, . . . , cn ≥ 0 be the eigenvalues of A together with corresponding eigenvectors
{u1, . . . , un}, we have

(19) X∗AX − trace(A) =
n∑
j=1

cj |u∗jx|2 −
n∑
j=1

cj .

This is precisely the setting of the projection lemmas. Using Lemma 4 together with (4), we know
that for any numbers 0 ≤ dj ≤ 1, j ∈ J ,

(20) P(|
∑
j∈J

dj |u∗jX|2 −
∑
j∈J

dj | ≥ 2t

√∑
i

di + t2) ≤ C exp(−C ′K−2t2).

However, it is wasteful to apply this to (19). We will need an extra partition step. Set

Jk := {1 ≤ j ≤ n :
1

4k+1
≤ cj ≤

1

4k
}, 0 ≤ k ≤ k0 := 10 log n,

and let Jk0+1 be the collection of the remaining indices.

For each 0 ≤ k ≤ k0 + 1, apply Lemma 2 to di := 4kci, ci ∈ Jk, we have, for any s ≥ 0

P(|
∑
i∈Jk

4k(ci|ui ·X|2 − 1)| ≥ 2s

√∑
i∈Jk

4kci + s2) ≤ C exp(−C ′K−2s2).

Set s := t
‖A‖F and simplify by 4k, the above inequality becomes

P(|(ci|ui ·X|2 − 1)| ≥ 2t

2k‖A‖F

√∑
i∈Jk

ci +
t2

4k‖AF ‖2
) ≤ C exp(−C ′K−2 t2

‖A‖2F
).

Apparently,
∑k0+1

k=0
t2

4k‖AF ‖2
≤ 2 t2

|AF |2 . Moreover,
∑

i∈Jk0+1
ci ≤ n× n−5 = n−4 and



RANDOM WEIGHTED PROJECTIONS, RANDOM QUADRATIC FORMS, RANDOM EIGENVECTORS 15

∑
0≤k≤k0

2−k
√∑
i∈Jk

ci ≤ k
1/2
0 (

k0∑
k=0

4−k
∑
i∈Jk

ci)
1/2

≤ 4 log1/2 n(

k0∑
k=0

∑
i∈Jk

c2
i )

1/2

≤ 4 log1/2 n‖A‖F ,

by Cauchy-Schwartz.

Putting the above estimates together and using the union bound, we obtain

P(|
n∑
i=1

ci(|u∗iX|2 − 1)| ≥ 4 log1/2 n‖A‖F t+ 2
t2

‖AF ‖2
+ n−2) ≤ C log n exp(−C ′K−2 t2

‖A‖2F
).

We can ignore the small term n−2. Reset t := 5 log1/2 n‖A‖F t+2 t2

‖AF ‖2 , the desired bound follows.

Remark 19. If we have more information about A, the extra log n term can be improved. For
instance of all eigenvalues of A are comparable, then one can remove this term.

The proof of Theorem 8 is left as an exercise.

7. Random matrices and the Stieltjes transform

In this section, we recall some facts about random matrices. The empirical spectral distribution
(ESD) of the n× n Hermitian matrix Wn := 1√

n
Mn is a one-dimensional function

FWn(x) =
1

n
|{1 ≤ j ≤ n : λj(W ) ≤ x}|,

where |I| denotes the cardinality of a set I. We are going to focus on the case when the entries of
Mn are K-bounded; it is easy to extend this assumption to K-concentrated (see Remark 24).

The Stieltjes transform of a real measure µ(x) is defined for any complex number z not in the
support of µ as

s(z) =

∫
R

1

x− z
dµ(x).

Thus, the Stieltjes transform sn(z) of Wn is

sn(z) =

∫
R

1

x− z
dFWn(x) =

1

n

n∑
i=1

1

λi(Wn)− z
.
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Furthermore, the Stieltjes transform s(z) of the semi-circle distribution is

s(z) :=

∫
R

ρsc(x)

x− z
dx =

−z +
√
z2 − 4

2
,

where
√
z2 − 4 is the branch of square root with a branch cute in [−2, 2] and asymptotically equals

z at infinity [3].

The beauty (and power) of the Stieltjes transform is the fact that it has clear a linear algebra
content; sn(z) of Wn is exactly the trace of the matrix (Wn− zI)−1. This allows us to compute the
Stieltjes transform by looking at the diagonal entries of (Wn − zI)−1. In matrix theory, Stieltjes
transform plays the role Fourier transform in analysis. If the Stieltjes transforms of two spectral
measures are close to each other (for all z), then the two measures are more or less the same. In
particular, if sn(z) is close to s(z), then the spectral distribution of Wn is close to the semi-circle
distribution (see for instance [3, Chapter 11], [8]). We are going to use the following lemma.

Lemma 20. Let Mn be a random Hermitian matrix with independent K-bounded entries with mean
0 and variance 1. Let 1/n < η < 1/10 and L, ε, δ > 0. For any constant C1 > 0, there exists a
constant C > 0 such that if one has the bound

|sn(z)− s(z)| ≤ δ

with probability at least 1− n−C uniformly for all z with |Re(z)| ≤ L and Im(z) ≥ η, then for any
interval I in [−L+ ε, L− ε] with |I| ≥ max(2η, ηδ log 1

δ ), one has

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

This is [22, Lemma 64], which, in turn, is a variant of [8, Corollary 4.3]).

An appropriate application of Lemma 20 will imply Theorem 17. In order to use this lemma, we
set L = 4, ε = 1, and critically

η :=
K2C2 log n

nδ6
,

where C = C1 + 104. We are going to show that

(21) |sn(z)− s(z)| = o(δ)

holds with probability at least 1 − n−C for any fixed z in the region {z ∈ C : |Re(z)| ≤ 4,
Im(z) ≥ η}. Notice that in this statement we fix z. However, it is simple to strengthen the
statement to hold for all z, using an ε-net argument, exploiting the fact that sn(z) is Lipschitz
continuous with the Lipschitz constant O(n2) (for details, we refer to [7, Theorem 1.1] or [22]).

In order to show that sn(z) is close to ssc(z), the key observation is that ssc(z) can also be defined
by the equation

(22) s(z) = − 1

z + s(z)
.
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This equation is stable, so if we can show sn(z) ≈ − 1
z+sn(z) then it follows that sn(z) ≈ ssc(z). This

observation was due to Bai et. al. [], who used it to prove the n−1/2 rate of convergence of sn(z) to
ssc(z). In [8, 7, 9], Erdős et. al. refined Bai’s approach to prove local semi-circle law at scales finer

than n−1/2, ultimately to n−1 logC n [8]. Our main contribution here is to push the scale further
down to n−1 log n, which we believe is (at most) a factor

√
log n from the truth.

Recall that sn(z) is the trace of (Wn − zI)−1. By computing the diagonal entires, one can show
(see [3, Chapter 11], [8], [22, Lemma 39])

(23) sn(z) =
1

n

n∑
k=1

1

− ζkk√
n
− z − Yk

where

Yk = a∗k(Wn,k − zI)−1ak,

and Wn,k is the matrix Wn with the kth row and column removed, and ak is the kth row of Wn

with the kth element removed.

The entries of ak are independent of each other and of Wn,k, and have mean zero and variance
1/n. By linearity of expectation we have

E(Yk|Wn,k) =
1

n
Trace(Wn,k − zI)−1 = (1− 1

n
)sn,k(z)

where

sn,k(z) =
1

n− 1

n−1∑
i=1

1

λi(Wn,k)− z
is the Stieltjes transform of Wn,k. From the Cauchy interlacing law, we can get

|sn(z)− (1− 1

n
)sn,k(z)| = O(

1

n

∫
R

1

|x− z|2
dx) = O(

1

nη
) = o(δ2)

and thus

E(Yk|Wn,k) = sn(z) + o(δ2).

The heart of the matter now is the following concentration result

Lemma 21. Let Mn be as in Lemma 20. For 1 ≤ k ≤ n, Yk = E(Yk|Wn,k) + o(δ2) holds with

probability at least 1−O(n−C) for any z with |Re(z)| ≤ 4 and Im(z) ≥ η.

To prove this lemma, we are going to make an essential use of Projection Lemma 2.

8. Proofs of Lemma 21 and Theorem 17

First, we record a lemma that provides a crude upper bound on the number of eigenvalues in short
intervals.

Lemma 22. Let Mn be a random Hermitian matrix with independent K-bounded entries with mean
0 and variance 1. For any constant C1 > 0, there exists a constant C2 > 0 such that for any interval

I ⊂ R with |I| ≥ C2K2 logn
n ,

NI � n|I|
with probability at least 1− n−C1.
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This Lemma is Proposition 66 in [22], which is a variant of [9, Theorem 5.1]. Notice that

(24) Yk = a∗k(Wn,k − zI)−1ak =
n−1∑
j=1

|uj(Wn,k)
∗ak|2

λj(Wn,k)− z
.

Therefore,

(25) |Yk −E(Yk|Wn,k)| =
1

n
|
n−1∑
j=1

|uj(Wn,k)
∗Xk|2 − 1

λj(Wn,k)− z
| = 1

n
|
n−1∑
j=1

Rj

λj(Wn,k)− x−
√
−1η
|,

where Rj := |uj(Wn,k)
∗Xk|2 − 1. By symmetry, we can restrict the sum to those indices j where

λj(Wn,k)− x ≥ 0.

Let J be the set of indices j such that 0 ≤ λj(Wn,k)− x ≤ η. Since x = Rez, η = Imz, we have

1
n |
∑

j∈J
Rj

λj(Wn,k)−x−
√
−1η
|

≤ 1
n |
∑

j∈J
λj(Wn,k)−x

(λj(Wn,k)−x)2+η2
Rj |+ 1

n |
∑

j∈J
η

(λj(Wn,k)−x)2+η2
Rj |

≤ 1
nη |
∑

j∈J
(λj(Wn,k)−x)η

(λj(Wn,k)−x)2+η2
Rj |+ 1

nη |
∑

j∈J
η2

(λj(Wn,k)−x)2+η2
Rj |.

Consider the sum S1 := |
∑

j∈J
(λj(Wn,k)−x)η

(λj(Wn,k)−x)2+η2
Rj |. As 0 ≤ (λj(Wn,k)−x)η

(λj(Wn,k)−x)2+η2
≤ 1, we are in position

to apply Lemma 2. Taking t = C4K
√

log n with a sufficiently large constant C4, by (4) we have

S1 ≤
C4

nη
(
√
|J | log n+K2 log n)

with probability at least 1 − C exp(−C ′C4 log n) ≥ 1 − n−C4/2. By Lemma 22, |J | ≤ Bnη with

probability at least 1− n−C4 , for some sufficiently large constant B > 0. Recall η :=
K2C2

3 logn
nδ6

; it

follows that with probability at least 1− 2n−C4/2 we have

S1 ≤ C4C
−2
3 Bδ6 log n.

Thus, for C3 sufficiently large compared to C4 and B, then S1 ≤ δ3. Similarly, we can prove the

same bound for S2 := 1
nη |
∑

j∈J
η2

(λj(Wn,k)−x)2+η2
Rj |.

For the other eigenvalues, we divide the real line into small intervals. For integer l ≥ 0, let Jl
be the set of eigenvalues λj(Wn,k) such that (1 + α)lη < λj(Wn,k) − x ≤ (1 + α)l+1η. We use the

parameters a = (1 + α)lη and α = 10 (say). The number of such Jl is O(log n). By Lemma 22 one
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has, |Jl| � naα. Again by Lemma 2 (take t = K
√
C(l + 1)

√
log n),

1

n
|
∑
j∈Jl

Rj

λj(Wn,k)− x−
√
−1η
|

≤ 1

n
|
∑
j∈Jl

λj − x
(λj − x)2 + η2

Rj |+
1

n
|
∑
j∈Jl

η

(λj − x)2 + η2
Rj |

≤ 1 + α

na
|
∑
j∈Jl

a(λj − x)

(1 + α)((λj − x)2 + η2)
Rj |+

η

na2
|
∑
j∈J

a2

(λj − x)2 + η2
Rj |

≤ (
1 + α

na
+

η

na2
)(K

√
C(l + 1)

√
log n

√
nαa+K2C(l + 1) log n)

≤ 20δ3

√
C

l + 1

(1 + α)l/2

with probability at least 1− 10n−C(l+1).

Summing over l, we have

1

n
|
∑
l

∑
j∈Jl

Rj

λj(Wn,k)− x−
√
−1η
| ≤ 40δ3

√
C

= o(δ2),

with probability at least 1− 10n−C . This completes the proof of Proposition 21.

Inserting the bounds into (23), one has

sn(z) +
1

n

n∑
k=1

1

sn(z) + z + o(δ2)
= 0

with probability at least 1 − 10n−C . The term |ζkk/
√
n| = o(δ2) as |ζkk| ≤ K by assumption.

Comparing this equation with (22), one can use a continuity argument (see [21] for details) to
obtain |sn(z)− s(z)| ≤ δ with probability at least 1− n−C+100.

Applying Lemma 20, we have

Theorem 23. For any constant C1 > 0, there exists a constant C2 > 0 such that for 0 ≤ δ ≤ 1/2
any interval I ⊂ (−3, 3) of length at least C2K

2 log n/nδ8,

|NI − n
∫
I
ρsc(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

In particular, Theorem 17 follows.

Remark 24. The only (nominal) difference is that we replace the K-bounded assumption in [22]
by K-concentrated. Since in [22], we only used the K-bounded to guarantee K-concentration, the
proof remains the same.

9. Proof of Theorem 14

With the concentration theorem for ESD, we are able to derive the eigenvector delocalization
results thanks to the next lemma:
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Lemma 25 (Eq (4.3), [7] or Lemma 41, [22]). Let

Bn =

(
a X∗

X Bn−1

)
be an n× n symmetric matrix for some a ∈ C and X ∈ Cn−1, and let

(
x
v

)
be an eigenvector of

Bn with eigenvalue λi(Bn), where x ∈ C and v ∈ Cn−1. Suppose that none of the eigenvalues of
Bn−1 are equal to λi(Bn). Then

|x|2 =
1

1 +
∑n−1

j=1 (λj(Bn−1)− λi(Bn))−2|uj(Bn−1)∗X|2
,

where uj(Bn−1) is a unit eigenvector corresponding to the eigenvalue λj(Bn−1).

First, for the bulk case, for any λi(Wn) ∈ (−2 + ε, 2− ε), by Theorem 17, one can find an interval
I ⊂ (−2 + ε, 2 − ε), centered at λi(Wn) and |I| = K2C log n/n, such that NI ≥ δ1n|I| (δ1 > 0
small enough) with probability at least 1− n−C1−10. By Cauchy interlacing law, we can find a set
J ⊂ {1, . . . , n− 1} with |J | ≥ NI/2 such that |λj(Wn−1)− λi(Wn)| ≤ |I| for all j ∈ J .

By Lemma 25, we have

|x|2 =
1

1 +
∑n−1

j=1 (λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗ 1√
n
X|2

≤ 1

1 +
∑

j∈J(λj(Wn−1)− λi(Wn))−2|uj(Wn−1)∗ 1√
n
X|2

≤ 1

1 + n−1|I|−2
∑

j∈J |uj(Wn−1)∗X|2

≤ 1

1 + 100−1n−1|I|−2|J |
≤ 200|I|/δ1 ≤

K2C2
2 log n

n

(26)

for some constant C2 with probability at least 1 − n−C1−10. The third inequality follows from
Lemma 2 by taking t = δ1K

√
C log n/

√
n (say).

Thus, by union bound and symmetry, ‖ui(Wn)‖∞ ≤ C2K log1/2 n√
n

holds with probability at least

1− n−C1 .

Appendix A. Proof for the Edge case of Theorem 14

For the edge case in Theorem 14, we use a different approach based on the next lemma:

Lemma 26 (Interlacing identity, Lemma 37, [21]). If uj(Wn−1)∗Y is non-zero for every j, then

(27)

n−1∑
j=1

|uj(Wn−1)∗Y |2

λj(Wn−1)− λi(Wn)
=

1√
n
ζnn − λi(Wn).

By symmetry, it suffices to consider the case λi(Wn) ∈ [2− ε, 2 + ε] for ε > 0 small. By Lemma 25,
in order to show |x|2 ≤ C4K4 log2 n/n (for some constant C > C1 + 100) with a high probability,
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it is enough to show
n−1∑
j=1

|uj(Wn−1)∗X|2

(λj(Mn−1)− λi(Mn))2
≥ n

C4K4 log2 n
.

By the projection lemma, |uj(Wn−1)∗X| ≤ K
√
C log n with probability at least 1 − 10n−C . It

suffices to show that with probability at least 1− n−C1−100,

n−1∑
j=1

|uj(Wn−1)∗X|4

(λj(Mn−1)− λi(Mn))2
≥ n

C3K2 log n
.

Let Y = 1√
n
X, by Cauchy-Schwardz inequality, it is enough to show for some integers 1 ≤ T− <

T+ ≤ n− 1 that ∑
T−≤j≤T+

|uj(Wn−1)∗Y |2

|λj(Wn−1)− λi(Wn)|
≥
√
T+ − T−

C1.5K
√

log n
.

And by Lemma 26, we are going to show for T+ − T−1 = O(log n) (the choice of T+, T− will be
given later) that

(28) |
∑

j≥T+orj≤T−

|uj(Wn−1)∗Y |2

λj(Wn−1)− λi(Wn)
| ≤ 2− ε−

√
T+ − T−

C1.5K
√

log n
+ o(1),

with probability at least 1− n−C1−100.

Now we divide the real line into disjoint intervals Ik for k ≥ 0. Let |I| = K2C logn
nδ8

with constant

δ ≤ ε/1000. Denote βk =
∑k

s=0 δ
−8s. Let I0 = (λi(Wn)−|I|, λi(Wn)+|I|). For 1 ≤ k ≤ k0 = log0.9 n

(say),
Ik = (λi(Wn)− βk|I|, λi(Wn)− βk−1|I|] ∪ [λi(Wn) + βk−1|I|, λi(Wn) + βk|I|),

thus |Ik| = 2δ−8k|I| = o(1) and the distance from λi(Wn) to the interval Ik satisfies

dist(λi(Wn), Ik) ≥ βk−1|I|.
For each such interval, by Theorem 17, the number of eigenvalues |Jk| = NIk ≤ nαIk |Ik|+ δkn|Ik|
with probability at least 1− n−C1−100, where αIk =

∫
Ik
ρsc(x)dx/|Ik|.

By Lemma 2, for the kth interval, with probability at least 1− n−C1−100,

1

n

∑
j∈Jk

|uj(Wn−1)∗X|2

|λj(Wn−1)− λi(Wn)|
≤ 1

n

1

dist(λi(Wn), Ik)

∑
j∈Jk

|uj(Wn−1)∗X|2

≤ 1

n

1

dist(λi(Wn), Ik)
(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
δk|Ik|

dist(λi(Wn), Ik)
+

CK2 log n

ndist(λi(Wn), Ik)

+
K
√
nαIk + nδk

√
|Ik|
√
C log n

ndist(λi(Wn), Ik)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+ 2δk−16 + δ8k−8 + δ4k−15.

For k ≥ k0 + 1, let the interval Ik’s have the same length of |Ik0 | = 2δ−8k0 |I|. The number of such
intervals within [2− 2ε, 2 + 2ε] is bounded crudely by o(n). And the distance from λi(Wn) to the
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interval Ik satisfies

dist(λi(Wn), Ik) ≥ βk0−1|I|+ (k − k0)|Ik0 |.

The contribution of such intervals can be computed similarly by

1

n

∑
j∈Jk

|uj(Wn−1)∗X|2

|λj(Wn−1)− λi(Wn)|
≤ 1

n

1

dist(λi(Wn), Ik)

∑
j∈Jk

|uj(Wn−1)∗X|2

≤ 1

n

1

dist(λi(Wn), Ik)
(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ αIk |Ik|
dist(λi(Wn), Ik)

+
100δk0

k − k0

with probability at least 1− n−C1−100.

Sum over all intervals for k ≥ 18 (say), then

(29) |
∑

j≥T+orj≤T−

|uj(Wn−1)∗Y |2

λj(Wn−1)− λi(Wn)
| ≤ |

∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

|+ δ.

Using Riemann integration of the principal value integral,

∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

= p.v.

∫ 2

−2

ρsc(x)

λi(Wn)− x
dx+ o(1),

where

p.v.

∫ 2

−2

ρsc(x)

λi(Wn)− x
dx := lim

ε→0

∫
−2≤x≤2,|x−λi(Wn)|≥ε

ρsc(x)

λi(Wn)− x
dx,

and using the explicit formula for the Stieltjes transform and from residue calculus, one obtains

p.v.

∫ 2

−2

ρsc(x)

x− λi(Wn)
dx = −λi(Wn)/2

for |λi(Wn)| ≤ 2, with the right-hand side replaced by −λi(Wn)/2+
√
λi(Wn)2 − 4/2 for |λi(Wn)| >

2. Finally, we always have

|
∑
Ik

αIk |Ik|
dist(λi(Wn), Ik)

| ≤ 1 + δ ≤ 1 + ε/1000.

Now for the rest of eigenvalues such that |λi(Wn)− λj(Wn−1)| ≤ |I0|+ |I1|+ . . .+ |I18| ≤ |I|/δ60,
the number of eigenvalues is given by T+ − T− ≤ n|I|/δ60 = CK2 log n/δ68. Thus

√
T+ − T−

CK
√

log n
≤ 1

δ34
√
C
≤ ε/1000,

by choosing C sufficiently large. Thus, with probability at least 1− n−C1−10,

|x| ≤ C2K
2 log n√
n

.
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Appendix B. Local Marchenko-Pastur law for random covariance matrix and
delocalization of singular vectors

In this Appendix, we extend the results obtained for random Hermitian matrices discussed in the
previous sections to random covariance matrices, focusing on the changes needed for the proofs.
Interested reader can refer to closely related papers [23] and [25] (see also [10], [18]).

Let Mn,p = (ζij)1≤i≤p,1≤j≤n be a random p×n matrix, where p = p(n) is an integer such that p ≤ n
and limn→∞ p/n = y for some y ∈ (0, 1]. Assume the atom variables ζij are jointly independent,
K-concentrated and have mean zero and variance one. The matrix ensemble M is said to obey
condition C1 if the random variables ζij are jointly independent, have mean zero and variance one,
and obey the moment condition supi,j E|ζij |C0 ≤ C for some constant C independent of n, p.

For such a p× n random matrix M , we form the n× n (sample) covariance matrix W = Wn,p =
1
nM

∗M . This (non-negative definite) matrix has at most p non-zero eigenvalues which are ordered
as

0 ≤ λ1(W ) ≤ λ2(W ) ≤ . . . ≤ λp(W ).

Denote σ1(M), . . . , σp(M) to be the singular values of M . Notice that σi(M) =
√
nλi(W )1/2. From

the singular value decomposition, there exist orthonormal bases u1, . . . , up ∈ Cn and v1, . . . , vp ∈ Cp
such that Mui = σivi and M∗vi = σiui.

The first fundamental result concerning the asymptotic limiting behavior of ESD for large covari-
ance matrices is the Marchenko-Pastur Law (see [15] and [2]).

Theorem 27. (Marchenko-Pastur Law) Assume a p × n random matrix M obeys condition C1
with C0 ≥ 4, and p, n→∞ such that limn→∞ p/n = y ∈ (0, 1], the empirical spectral distribution of
the matrix Wn,p = 1

nM
∗M converges in distribution to the Marchenko-Pastur Law with a density

function

ρMP,y(x) :=
1

2πxy

√
(b− x)(x− a)1[a,b](x),

where
a := (1−√y)2, b := (1 +

√
y)2.

The hard edge of the limiting support of spectrum refers to the left edge a when y = 1 where
it gives rise to a singularity of x−1/2. The cases of left edge a when y < 1 and the right edge
b regardless of the value of y are called the soft edges. Recent progress on studying the local
convergence to Marchenko-Pastur Law include [10], [18],[23],[25] for the soft edge and [20], [4] for
the hard edge. In this paper, we focus on improving the previous results for the soft edge case.

Our main results for the random covariance matrices are the following local Marchenko-Pastur
law (LMPL) and the delocalization property of singular vectors.

Theorem 28. For any constants ε, δ, C1 > 0 there exists C2 > 0 such that the following holds.
Assume that p/n → y for some 0 < y ≤ 1. Let M = (ζij)1≤i≤p,1≤j≤n be a random matrix whose
entries are independent K-concentrated random variables with mean zero and variance 1. Consider
the covariance matrix Wn,p = 1

nM
∗M . Then with probability at least 1− n−C1, one has

|NI(Wn,p)− p
∫
I
ρMP,y(x) dx| ≤ δp|I|.

for any interval I ⊂ (a+ ε, b− ε) of length at least C2K
2 log n/n.
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Theorem 29 (Delocalization of singular vectors). For any constant C1 > 0 there is a constant
C2 > 0 such that the following holds.

• (Bulk case) For any ε > 0 and any 1 ≤ i ≤ p with σi(Mn,p)
2/n ∈ [a+ ε, b− ε], let ui denote

the corresponding (left or right) unit singular vector, then

‖ui‖∞ ≤
C2K log1/2 n√

n

with probability at least 1− n−C1.
• (Edge case) For any ε > 0 and any 1 ≤ i ≤ p with σi(Mn,p)

2/n ∈ [a− ε, a+ ε]∪ [b− ε, b+ ε]
if a 6= 0 and σi(Mn,p)

2/n ∈ [4− ε, 4] if a = 0, let ui denote the corresponding (left or right)
unit singular vector, then

‖ui‖∞ ≤
C2K

2 log n√
n

with probability at least 1− n−C1.

B.1. Proof of Theorem 28. Similarly to the Hermitian case, we compare the Stieltjes transform
of the ESD of matrix W

s(z) :=
1

p

p∑
i=1

1

λi(W )− z
,

with the Stieltjes transform of Marchenko-Pastur Law

sMP,y(z) :=

∫
R

1

x− z
ρMP,y(x) dx =

∫ b

a

1

2πxy(x− z)
√

(b− x)(x− a) dx,

which is the unique solution to the equation

sMP,y(z) +
1

y + z − 1 + yzsMP,y(z)
= 0

in the upper half plane. We will show that s(z) satisfies a similar equation.

The analogue of Lemma 20 is the following:

Proposition 30. (Lemma 29, [23]) Let 1/10 ≥ η ≥ 1/n, and L1, L2, ε, δ > 0. For any constant
C1 > 0, there exists a constant C > 0 such that if one has the bound

|s(z)− sMP,y(z)| ≤ δ
with (uniformly) probability at least 1− n−C for all z with L1 ≤ Re(z) ≤ L2 and Im(z) ≥ η. Then
for any interval I in [L1 − ε, L2 + ε] with |I| ≥ max(2η, ηδ log 1

δ ), one has

|NI − n
∫
I
ρMP,y(x) dx| ≤ δn|I|

with probability at least 1− n−C1.

Our objective is to show

(30) |s(z)− sMP,y(z)| = o(δ)

with probability at least 1− n−C for all z in the region Ry, where

Ry = {z ∈ C : |z| ≤ 10, a− ε ≤ Re(z) ≤ b+ ε, Im(z) ≥ η}
if y 6= 1, and

Ry = {z ∈ C : |z| ≤ 10, ε ≤ Re(z) ≤ 4 + ε, Im(z) ≥ η}
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if y = 1. We use the parameter η = K2C2 logn
nδ6

. In the defined region Ry, |sMP,y(z)| = O(1).

First, by Schur’s complement, one can rewrite

(31) s(z) =
1

p
Tr(W − zI)−1 =

1

p

p∑
k=1

1

ξkk − z − Yk

where Yk = a∗k(Wk − zI)−1ak, and Wk is the matrix W ∗ = 1
nMM∗ with the kth row and column

removed, and ak is the kth row of W with the kth element removed. Let Mk be the (p − 1) × n
minor of M with the kth row removed and X∗i ∈ Cn (1 ≤ i ≤ p) be the rows of M . Thus
ξkk = Xk

∗Xk/n = ||Xk||2/n, ak = 1
nMkXk,Wk = 1

nMkM
∗
k . And

Yk =

p−1∑
j=1

|a∗kvj(Mk)|2

λj(Wk)− z
=

p−1∑
j=1

1

n

λj(Wk)|X∗kuj(Mk)|2

λj(Wk)− z

where u1(Mk), . . . , up−1(Mk) ∈ Cn and v1(Mk), . . . , vp−1(Mk) ∈ Cp−1 are orthonormal right and left
singular vectors ofMk. Here we used the facts that a∗kvj(Mk) = 1

nX
∗
kM

∗
kvj(Mk) = 1

nσj(Mk)X
∗
kuj(Mk)

and σj(Mk)
2 = nλj(Wk).

The entries of Xk are independent of each other and of Wk, and have mean 0 and variance 1.
Noticed uj(Mk) is a unit vector. By linearity of expectation we have

E(Yk|Wk) =

p−1∑
j=1

1

n

λj(Wk)

λj(Wk)− z
=
p− 1

n
+
z

n

p−1∑
j=1

1

λj(Wk)− z
=
p− 1

n
(1 + zsk(z))

where

sk(z) =
1

p− 1

p−1∑
i=1

1

λi(Wk)− z
is the Stieltjes transform for the ESD of Wk. From the Cauchy interlacing law, we can get

|s(z)− (1− 1

p
)sk(z)| = O(

1

p

∫
R

1

|x− z|2
dx) = O(

1

pη
)

and thus

E(Yk|Wk) =
p− 1

n
+ z

p

n
s(z) +O(

1

nη
) =

p− 1

n
+ z

p

n
s(z) + o(δ2).

In fact a similar estimate holds for Yk itself:

Proposition 31. For 1 ≤ k ≤ n, Yk = E(Yk|Wk) + o(δ2) holds with probability at least 1− 20n−C

uniformly for all z in the region Ry.

To prove Proposition 31, we decompose

Yk −E(Yk|Wk) =

p−1∑
j=1

λj(Wk)

n

(
|X∗kuj(Mk)|2 − 1

λj(Wk)− z

)
:=

1

n

p−1∑
j=1

λj(Wk)

λj(Wk)− x−
√
−1η

Rj .(32)

The estimation of (32) is a repetition of the calculation in (25). Therefore, inserting the bounds
to (31), we have

s(z) +
1

y + z − 1 + yzs(z) + o(δ2)
= 0,
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with probability at least 1 − 10n−C . By a continuity argument (see [25] for details), one has
|s(z) − sMP,y(z)| = o(δ) with probability at least 1 − n−C . By Proposition 30, one can derive the
following LMPL for random covariance matrices.

Theorem 32. For any constants ε, δ, C1 > 0, there exists C2 > 0 such that the following holds.
Assume that p/n → y for some 0 < y ≤ 1. Let M = (ζij)1≤i≤p,1≤j≤n be a random matrix with
entries bounded by K where K may depend on n. Consider the covariance matrix Wn,p = 1

nM
∗M .

Then with probability at least 1− n−C1, one has

|NI − p
∫
I
ρMP,y(x) dx| ≤ δp|I|,

for any interval I ⊂ (a−ε, b+ε) if a 6= 0 and I ⊂ (ε, 4+ε) if a = 0 of length at least C2K
2 log n/nδ8.

In particular, Theorem 28 follows.

B.2. Proof of Theorem 29. To prove the delocalization of singular vectors, we need the following
formula that expresses an entry of a singular vector in terms of the singular values and singular
vectors of a minor. It is enough to prove the delocalization for the right unit singular vectors.

Lemma 33 (Corollary 25, [23]). Let p, n ≥ 1, and let

Mp,n =
(
Mp,n−1 X

)
be a p × n matrix for some X ∈ Cp, and let

(
u
x

)
be a right unit singular vector of Mp,n with

singular value σi(Mp,n), where x ∈ C and u ∈ Cn−1. Suppose that none of the singular values of
Mp,n−1 are equal to σi(Mp,n). Then

|x|2 =
1

1 +
∑min(p,n−1)

j=1
σj(Mp,n−1)2

(σj(Mp,n−1)2−σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2

,

where v1(Mp,n−1), . . . , vmin(p,n−1)(Mp,n−1) ∈ Cp is an orthonormal system of left singular vectors
corresponding to the non-trivial singular values of Mp,n−1.

In a similar vein, if

Mp,n =

(
Mp−1,n

Y ∗

)
for some Y ∈ Cn, and

(
v
y

)
is a left unit singular vector of Mp,n with singular value σi(Mp,n),

where y ∈ C and v ∈ Cp−1, and none of the singular values of Mp−1,n are equal to σi(Mp,n), then

|y|2 =
1

1 +
∑min(p−1,n)

j=1
σj(Mp−1,n)2

(σj(Mp−1,n)2−σi(Mp,n)2)2
|uj(Mp−1,n)∗Y |2

,

where u1(Mp−1,n), . . . , umin(p−1,n)(Mp−1,n) ∈ Cn is an orthonormal system of right singular vectors
corresponding to the non-trivial singular values of Mp−1,n.

First, if λi(Wp,n) lies within the bulk of spectrum, by Theorem 32, one can find an interval
I ⊂ (a+ ε, b− ε), centered at λi(Wp,n) and with length |I| = K2C2

2 log n/2n such that NI ≥ δ1n|I|
(δ1 > 0 small constant) with probability at least 1− n−C1−10. By Cauchy interlacing law, we can
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find a set J ⊂ {1, . . . , n − 1} with |J | ≥ NI/2 such that |λj(Wn−1) − λi(Wn)| ≤ |I| for all j ∈ J .
Applying Lemma 25, one has

min(p,n−1)∑
j=1

σj(Mp,n−1)2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2

≥ 1

n

∑
j∈J

λj(Wp,n−1)

(λj(Wp,n−1)− λi(Wp,n))2
|vj(Mp,n−1)∗X|2

≥
∑
j∈J

n−1|I|−2|vj(Mp,n−1)∗X|2 � n−1|I|−2|J | � |I|−1

with probability at least 1− n−C1−10.

Thus, by the union bound and Lemma 33, ‖ui(Mp,n)‖∞ ≤ C2K log1/2 n√
n

holds with probability at

least 1− n−C1 .

For the edge case, where |λi(Wp,n) − a| = o(1) (a 6= 0) or |λi(Wp,n) − b| = o(1), we refer to the
analogue of Lemma 26.

Lemma 34 (Interlacing identity for singular values, Lemma 3.5 [25]). Assume the notations in
Lemma 33, then for every i,

(33)

min(p,n−1)∑
j=1

σj(Mp,n−1)2|vj(Mp,n−1)∗X|2

σj(Mp,n−1)2 − σi(Mp,n)2
= ||X||2 − σi(Mp,n)2.

Similarly, we have

(34)

min(p−1,n)∑
j=1

σj(Mp−1,n)2|uj(Mp−1,n)∗Y |2

σj(Mp−1,n)2 − σi(Mp,n)2
= ||Y ||2 − σi(Mp,n)2.

By the union bound and Lemma 25, in order to show |x|2 ≤ C4K2 log2 n/n with probability at
least 1− n−C1−10 for some large constant C > C1 + 100, it is enough to show

min(p,n−1)∑
j=1

σj(Mp,n−1)2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)∗X|2 ≥ n

C4K4 log2 n
.

By the projection lemma, |vj(Mp,n−1)∗X| ≤ K
√
C log n with probability at least 1− 10n−C .

It suffices to show that with probability at least 1− n−C1−100,

min(p,n−1)∑
j=1

σj(Mp,n−1)2

(σj(Mp,n−1)2 − σi(Mp,n)2)2
|vj(Mp,n−1)∗X|4 ≥ n

C3K2 log n
.

By Cauchy-Schwardz inequality and the fact |σi(Mp,n−1)| = O(
√
n), it is enough to show for some

integers 1 ≤ T− < T+ ≤ min(p, n− 1) (the choice of T−, T+ will be given later),∑
T−≤j≤T+

1
nσj(Mp,n−1)2

|σj(Mp,n−1)2 − σi(Mp,n)2|
|vj(Mp,n−1)∗X|2 ≥

√
T+ − T−

C1.5K
√

log n



28 VAN VU AND KE WANG

On the other hand, by the projection lemma, with probability at least 1 − n−C1−100, ‖X‖2/n =
y + o(1). By (33) in Lemma 34,

(35)

min(p,n−1)∑
j=1

1

n

σj(Mp,n−1)2|vj(Mp,n−1)∗X|2

σj(Mp,n−1)2 − σi(Mp,n)2
= y + o(1)− λi(Wp,n).

It is enough to evaluate ∑
j≥T+orj≤T−

λj(Wp,n−1)|vj(Mp,n−1)∗X|2

λj(Wp,n−1)− λi(Wp,n)
.(36)

Now we divide the real line into disjoint intervals Ik for k ≥ 0. Let |I| = K2C logn
nδ8

with constant

δ ≤ ε/1000. Denote βk =
∑k

s=0 δ
−8s. Let I0 = (λi(Wp,n) − |I|, λi(Wp,n) + |I|). For 1 ≤ k ≤ k0 =

log0.9 n (say),

Ik = (λi(Wp,n)− βk|I|, λi(Wp,n)− βk−1|I|] ∪ [λi(Wp,n) + βk−1|I|, λi(Wp,n) + βk|I|),

thus |Ik| = 2δ−8k|I| = o(1) and the distance from λi(Wp,n) to the interval Ik satisfies

dist(λi(Wp,n), Ik) ≥ βk−1|I|.

For each such interval, by Theorem 17, the number of eigenvalues |Jk| = NIk ≤ nαIk |Ik|+ δkn|Ik|
with probability at least 1− n−C1−100, where αIk =

∫
Ik
ρMP,y(x)dx/|Ik|.

By Lemma 2, for the kth interval, with probability at least 1− n−C1−100,

1

n

∑
j∈Jk

|λj(Wp,n−1)||vj(Mp,n−1)∗X|2

|λj(Wp,n−1)− λi(Wp,n)|
≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wn), Ik)
)
∑
j∈Jk

|vj(Wp,n−1)∗X|2

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(pαIk |Ik|+ δkp|Ik|+ 4K

√
C log n

√
n
√
|Ik|+ CK2 log n)

≤ y(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik|+ 100δ−7k−4|I|.

For k0 + 1 ≤ k ≤ N , let the interval Ik’s have the same length of |Ik0 | = 2δ−8k0 |I|. And the
distance from λi(Wp,n) to the interval Ik satisfies

dist(λi(Wp,n), Ik) ≥ βk0−1|I|+ (k − k0)|Ik0 |.
The contribution of such intervals can be computed similarly by

1

n

∑
j∈Jk

|λj(Wp,n−1)||vj(Mp,n−1)∗X|2

|λj(Wp,n−1)− λi(Wp,n)|
≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wn), Ik)
)
∑
j∈Jk

|vj(Wp,n−1)∗X|2

≤ 1

n
(1 +

λi(Wp,n)

dist(λi(Wp,n), Ik)
)(|Jk|+K

√
|Jk|
√
C log n+ CK2 log n)

≤ y(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik|+

100δk0−8

k − k0
,

with probability at least 1− n−C1−100.
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Sum over all intervals for k ≥ 20 (say) and notice that Nδ−8k0 |I| = O(1). We have

k0∑
k=0

100δ−7k−4|I|+
N∑

k=k0

100δk0−8

k − k0
= o(1).

Using Riemann integration of the principal value integral,

y
∑
Ik

(1 +
λi(Wp,n)

dist(λi(Wp,n), Ik)
)αIk |Ik| = |p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx|+ o(1)(37)

where (see [25] for details)

(38) p.v.

∫ b

a
y
xρMP,y(x)

x− λi(Wp,n)
dx =

{√
y + o(1), if |λi(Wp,n)− a| = o(1),

−√y + o(1), if |λi(Wp,n)− b| = o(1).

by using the explicit formula for the Stieltjes transform and from residue calculus.

Now for the rest of eigenvalues such that |λi(Wp,n)−λj(Wp,n−1)| ≤ |I0|+ |I1|+ . . .+ |I20| ≤ |I|/δ60.
The number of eigenvalues is given by T+ − T− ≤ n|I|/δ60 = CK2 log n/δ68. Thus

√
T+ − T−

C1.5K
√

log n
≤ 1

δ34C
≤ ε/1000,

by choosing C sufficiently large. By comparing (35), (36) and (38), one can conclude with proba-
bility at least 1− n−C1−10,

|x| ≤ C2K
2 log n√
n

.
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